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Our work is directed at Muon Collaboration problems. 
 
• Cooling muons requires absorbers and rf. 
 
 
 
 
 
 
 
 
 
 
• X rays make backgrounds in the Muon Ionization Cooling Experiment (MICE)  
 
 
 
 
 
 
           scattering     measuring  acceleration+absorbers=cooling       measuring 
 
• Goals: 1)  Insure we can reach full E field with 3 - 5 T solenoid. 
             2)  Reduce backgrounds in spectrometers. 
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We have a program directed at understanding rf limits. 
 
This was started to understand muon cooling problems. 
 
• There are three coordinated efforts: 
  1)  Low frequency cavity studies     (Muon Collabration) 
  2)  Atom Probe Tomography            (ILC and Muon Collaboration) 
  3)  Modeling                                     (generally applicable) 
 
• We are converging on a general theory of vacuum breakdown. 
 
• We are producing unique data on high gradient environments. 
 
• Our work should be relevant to ILC/SCRF, CLIC, DC . . . 
 
• We argue that High Gradient Studies is one field. 
  Superconducting rf,  
  Normal Conducting rf                        are limited by same mechanisms, 
  DC vacuum breakdown                                   . . at the same value of E. 

} 



 Data at Fermilab measured the local environment at emitters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                      Emitter dimensions ~ 0.1 µ 
                                                                                      Surface field ~ 10 GV/m 
 
 

 

 



 
 

 

Measuring local electric fields is straightforward. 
 
• The slope of the curve log10I vs. log10E  
   gives the exponent of I ~ E n.  
 
 
 
 
 
 
 
 
 
 
 
• Stresses are determined by Elocal, 
 

        σ = – 0.5 ε0 E2. 
 

 

•   The value of n and φ, the work      
 function, determine the local field. 

 



 

Our Breakdown Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Electric fields produce tensile stresses that fracture the surface. 



Local fields with E > 6 GV/m damage surfaces. 
 
• Dark currents describe asperities with Elocal ~ 4-10 GV/m, dimensions ~ 0.1 µ. 
 
• At this field the electrostatic tensile stress ~ tensile strength. 
 

  We see damage in normal rf systems  
 

  There seems to be damage in superconducting rf systems 
 

  The atom probe system shows damage  
 
• The damage can trigger breakdown. 
 

  Fragments / clusters are torn off. 
 

  Field emitted beams vaporize fragments 
 

  Lossy plasmas short cavities. 
 
 
 
 
 

• Details in 3 recent Phys. Rev. STAB papers, a NIM paper, PAC05, EPAC . . .
 



Our model is consistent with data. 
 

• DC to 30 GHz – breakdown occurs with local fields ~ 7 GV/m. 
 

• Material properties – failure if tensile stress ~ tensile strength is unsurprising. 
 

• Vacuum / gas pressure – little variation from 10-11 to 105 Torr.  
 

• Different materials – harder materials better (oxides may matter - not neat). 
 

• Temperature dependence – weak dependence is predicted. 
 

• Secondary emitters – may determine operating fields – we have new data 
 

• Breakdown gap – from micron (DC) to meter (rf) scales. 
 

• Strong magnetic fields - torques within emitters seem to dominate. 
 

• Cavity conditioning – breakdown occurs at constant local electric fields. 
 

• Rapid development of spark – determined by high power density of FE e-. 
 

• Pulse length – fatigue can explain pulse length dependence - no predictive power. 
 

• Atom probe data – at 5 – 10 GV/m, surface layers can belch and pop. 
 

• Superconducting RF – similar mechanisms, gradient limit at Elocal ~ 5-10 GV/m(?). 
 

• Light and power switching – in the lab, and in the home.



Accelerating gradients are limited by local E fields. 
 

 

 



Gas Pressure doesn’t seem to matter much. 
 
• From 10-11 to 102 Torr, breakdown fields are pretty constant - if the 
 configuration is set up so that there is no gas avalanche. 
 
• Muons Inc. data extends and confirms these results to even higher pressures. 
 

 

 

 



 

  

Local fields are constant during conditioning. 
 
Local field constant during conditioning (gradients and enhancements change) - KEK 
 
 
 
 
 
 
 
 
 
 

Emitters and electron beams. 
 
• The beams we see are consistent with the surface 
 we had in the cavity.  
 
 
                          emitters                                             beams 

 



Breakdown events change the pattern of field emitters. 
 
• We look at dark current spots before, during and after an event. 
 
• The brightest emitter disappeared 
 during the event. 

 
 



 

Magnetic field data is consistent with J x B effects. 
 
• j x B forces are driven by field emission currents in the emitter.  
 
                        The data                                                     The model 
 
 
 
 

 



 

 

 
 

Temperature effects are small. 
 
• Zeke Insepov has been modeling 
 cluster emission using his code. 
 
 
 
 
 
 
              Modeling 
 
              CERN/CLIC results   
 
 
 



 

 

The highest power density in the universe ? ? ? 
 
• Highest electric field compatible with macroscopic solids. 
 
• Highest currents compatible with these electric fields 
 
• Higher power density than 
  every other “normal”  
 phenomenon (?) 
 
• How big are GRBs? 
            Supernovae?  
 
• In the home? 



 

High fields cause mechanical failures. 
 
• Stresses cause failures in Field Ion Microscopes. 
 
• Studies on sample stress in early ‘70’s, (Birdseye and Smith). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• We can see the surface under field emission conditions. 



 

Secondary emitters. 
 
• Secondary emitters are produced in breakdown events.  We see them. 
 
 
 
 
                                                                                  β = enhancement factor 
                                                                                     ~ sharpness ~ bump height 



The secondary emitter spectrum – first measurements. 
 
• Sources on an undamaged Be surface at different fields. . . . 
 
 
 
 
 
 
 
 
 
 
•  . . . give a preliminary spectrum. 
 
 
 
 
 

 
 

 



 So what does all this have to do with SCRF? 
 
• Copper systems and Superconducting systems have somewhat different limits. 
 
• The dark currents from Cu and SC cavities can be similar.

 
 



”rf breakdown triggers” are seen with Atom Probe Tomography 
 
• LEAP data correlates with rf data.  LEAP turn-on is unstable. 
 
• Problems occur at about the right fields.  (Oxide layers ?) 
 
 

 



Surface fields can be much higher than expected. 
 
• The “average” surface field of about 6 GV/m is, in fact about 120 GV/m. 
 
• This can be shown by the highly ionized Cu++++ produced. 
 
 

 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

The LEAP is a giant leap forward 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                



 

 

Atom Probe Data 
 
• E. Marquis D.N.Seidman  PRL 2003 

 
 
 
 
 
 

 



Atom Probe samples look like field emission (breakdown) sites. 
 
• Atom Probe work is useful for two reasons: 
 

  1)  It provides a detailed look at high electric field on materials. 
 

  2)  It provides a way of looking at surface composition. 
 
 
     Emitter in Cavity Atom Probe Sample 
 
     Surface field 4 – 8 GV/m 4 – 40 GV/m 
 
     Size ~100 nm ~100 nm 
 
     Temperature 300+ K 20 – 300 K 
 
     Pulsing 200 - 12000 MHz 0.2 MHz 
 
     Stored energy 1 – 100 J < 10-6 J 
 
 
.



 

 
 

Fluorine 

Niobium+++ 

 

Atom Probe Data: Fluorine Contamination on Niobium 
 
• Ions are identified by time of flight (over ~10 cm, ~1 sr). 
 
 

 



Oxide Parameters  
 
• We measure the density of different forms of the oxide with depth. 
 
 

 

 



A facility to test coatings with APT is operational. 
 
• Coatings can reduce dark currents, x rays and losses. 
 
• It is useless to study coatings without looking at how the coating is bound.

 



Conclusions 
 
• Though based on working prototypes, the last three energy  
 frontier machines had problems. 
  ISABELLE – magnet design 
  SSC – magnet design 
  NLC – cavity design 
 
• Superconducting rf is not a proven technology for 10 B$ machines. 
 
• The ILC assumes areas of  ~104 m2 operating at ~100 MV/m for ~30 years. 
 
• The basic physical mechanisms at work at high fields are not well understood. 
 
• Efficient mass production assumes starting with an optimized design. 
 
 
 
• Basic materials R&D is important. 


